

TREATMENT WETLANDS AS INFRASTRUCTURE

Green Infrastructure Symposium November 17, 2011

Tara Dougherty, P.E.

Presentation Overview

- 1. What are Treatment Wetlands?
- 2. Where do Treatment Wetlands Fit?
- 3. Treatment Wetland History
- 4. Design Guidance
- 5. Types of Treatment Wetlands
- Infrastructure Applications and Treatment Capabilities
- 7. Benefits
- 8. Case Studies

What are Treatment Wetlands?

(constructed wetlands, engineered wetlands)

A treatment wetland

is a vegetated, engineered system designed to filter and treat pollutants in water.

Where do Treatment Wetlands Fit?

Basic Wastewater Treatment Process:

1: Collection

2: Treatment

3: Discharge

Treatment Wetlands

Gray vs. Green Infrastructure?

Gray infrastructure is typically:

- Driven by mechanical processes
- Single purposed
- Centralized
- Comprised of human-made materials

Green infrastructure is typically:

- Driven by natural processes
- Multipurposed
- Distributed rather than centralized
- Land and vegetation based

Treatment Wetland History

- 1952: technology developed from research at the Max Planck Institute in West Germany
- 1970's: technology transferred to North America
- Treatment Wetlands & New York State:
 - 1973, Brookhaven National Laboratory, NY, first engineered, constructed wetland pilot system in North America was constructed
 - 1990s, Minoa, NY, some of the first research on horizontal subsurface flow wetlands was conducted

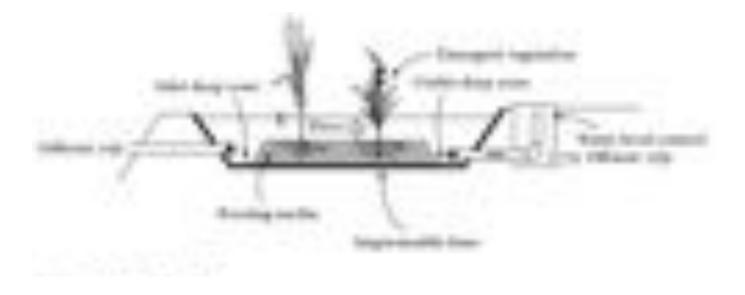
Design Guidance

No equivalent to "10 States Standards" for wetland systems

- EPA Guidance Documents
- New York State Stormwater Manual
- Treatment Wetlands 2 (textbook)
- Academic Literature
- Water Environment Research Foundation (WERF)
 Reports

Types of Treatment Wetlands

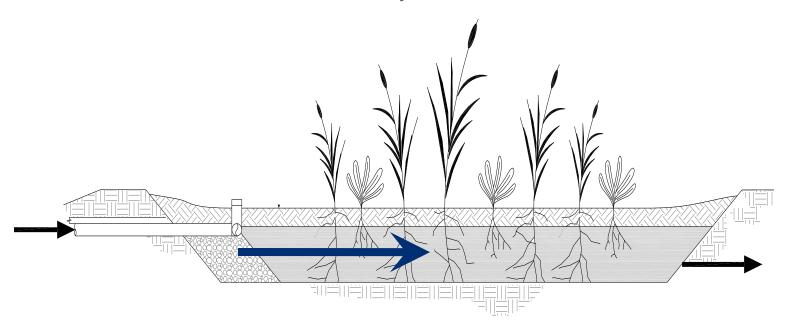
- 1. Free Water Surface
- 2. Horizontal Subsurface Flow
- 3. Vertical Flow



Free Water Surface Wetland Schematic

Free water surface wetlands (FWS) have areas of open water and are similar in appearance to natural marshes. FWS wetlands typically contain floating vegetation and emergent plants.

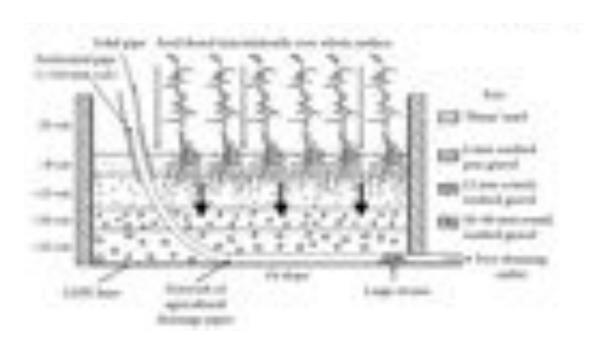
Newly Constructed Free Water Surface Wetland



Horizontal Subsurface Flow Wetlands

Horizontal subsurface flow wetlands (HSSF) typically have a gravel bed planted with wetland vegetation. The water, kept below the surface of the bed, flows horizontally from the inlet to the outlet.

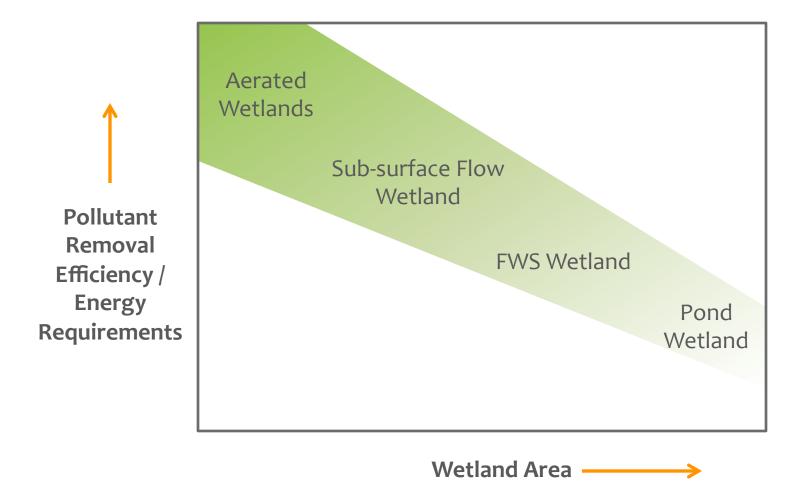
Established Horizontal Subsurface Flow Wetland



Vertical Flow Wetlands

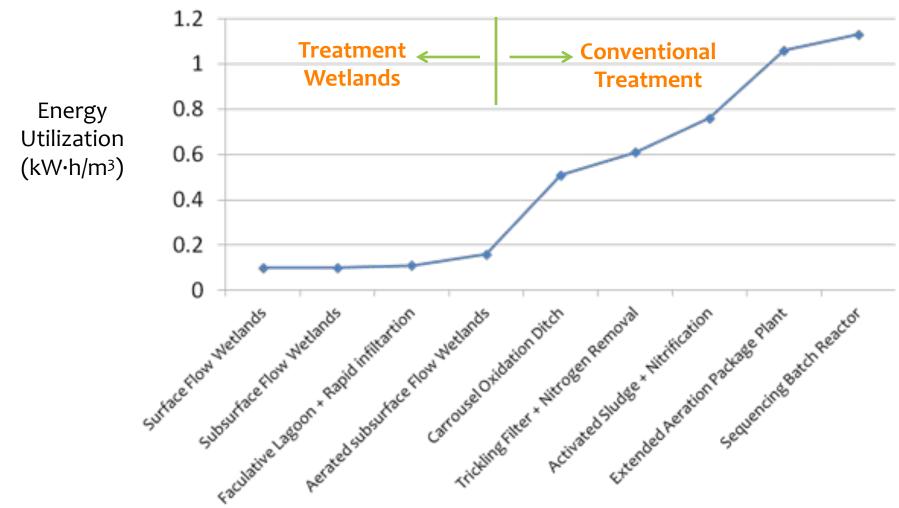
Vertical flow wetlands (VF) distribute water across the surface of a sand or gravel bed planted with wetland vegetation. The water is treated as it percolates through the plant root zone.

Newly Constructed Vertical Flow Wetland


Infrastructure Applications and Treatment Capabilities

Wetland Type	Dominant Treatment Processes	Typical Uses
Free Water Surface	 Aerobic and anaerobic organic matter degradation Particulate settling Denitrification Phosphorus removal through burial in sediments Pathogen removal 	 Stormwater storage and treatment Acid mine drainage treatment Groundwater remediation Landfill leachate treatment
Horizontal Subsurface Flow	 Organic matter removal by filtration and anaerobic degradation Denitrification Pathogen removal 	Single family home or small community secondary wastewater treatment
Vertical Flow	 Nitrification Aerobic organic matter degradation Filtration of suspended sediments Pathogen removal 	 CSO treatment Municipal/domestic wastewater treatment Landfill leachate treatment Biosolids dewatering

Comparison of Energy/Land Requirements



Comparison of Energy Requirements

(municipal wastewater)

Benefits

- Opportunity to reinvest in communities while solving environmental problems
- Research opportunities
- Educational opportunities
- Public/private partnerships
- Reduce Life Cycle Energy and Maintenance Requirements

Wetland wastewater treatment system in Koh Phi Phi, Thailand:

Benefits

Article from the Batavian, NY August 2011: Wakodahatchee Wetlands, Delray Beach, FL:

Case Study: Wellsville, NY

Groundwater Treatment System

Completed in 2008

Flow: 280,000 gpd

Area: 10 acres

Treatment Components:

Cascade Aerator

Sedimentation pond

• 3 free water surface wetlands

• 5 vertical flow wetlands

Case Study: Batavia, NY

Free Water Surface Wetland

Completed in 1990

Wastewater Polishing System

Average Influent Flow: 4 million gallons per day

Wetland Area: 15 acres

Case Study: Buffalo Airport, NY

Airport Deicing Fluid Treatment Completed in 2009

Flow: 1,200,000 gpd

Treatment Components:

- Pumping system
- 4 aerated VF wetland cells

Treatment Wetland Cells

Airport Runway

Case Study: Buffalo Sewer Authority

Combined Sewer Overflow Management

Proposed System

Flow: 500,000 gpd


Area: 2 acres

Treatment Components:

- Screening System
- Sedimentation Tank
- 3 VF wetlands
- Cascade Aerator

Proposed Wetland Location

Buffalo River

Treatment Wetlands...

- Are part of the gray/green spectrum of infrastructure options
- Come in different forms and can be designed for a number of treatment goals:

Municipal Wastewater • CSO • Stormwater

Landfill Leachate • Groundwater • Biosolids Dewatering

- Typically have lower energy requirements and a larger footprint than other treatment options
- Can provide solutions for environmental issues while creating a community amenity

